Reversing cancer stemness
نویسندگان
چکیده
lethality of malignant breast cancer in human patients. Although various targeted and non-targeted therapies can occasionally control the progress of breast cancer, a significant portion of patients develop resistance to chemotherapy and experience metastatic recurrence. The epithelial to mesenchymal transition (EMT), a key developmental program in embryogenesis, has been found to be closely intertwined with the occurrence of metastasis in various human cancers. EMT can be prompted by the expression of multiple transcriptional factors and is controlled by several signaling pathways including TGF-β, Wnt and Notch signaling. Moreover, a link between EMT and the onset of epithelial stem cell-like properties has been suggested. However, the mechanism underlining this relationship remains unrevealed, and whether cancer stemness is a consequence of EMT or they are two parallel phenomena refecting cell plasticity remains unknown. Towards the goal of understanding breast cancer metastasis, our group performed a cross-species expression profiling and identified Foxq1 as an EMT-and metastasis-promoting gene in breast cancer [1]. Following this discovery, Foxq1 expression has been shown to promote EMT and metastasis in a wide array of human cancers [2-4]. In line with the previously-mentioned link between EMT and stemness, we demonstrated that ectopic expression of FOXQ1 led to an increase in the stem-like phenotype and CD44+/CD24-population consists of over 90% of cells. This increase in the stem cell population correlated with the induction of EMT. Mechanistically, we identified the receptor tyrosine kinases PDGFR α and β as downstream targets of FoxQ1 [5]. Our study showed that knockdown of PDGFR α and β significantly decreased cell proliferation, migration and invasion in HMLE/FoxQ1 cells. The effects were greatest when both α and β were knocked down. Knockdown of PDGFR α and β in HMLER/FoxQ1 cells decreased lung metastases in vivo. Moreover, Knockdown of α and β, or β alone, decreased the CD44+/CD24-phenotype by 25% without reversing the FoxQ1-induced EMT at the molecular and morphological levels. These results strongly suggest that FoxQ1's role as a promoter of the CSC's phenotype is regulated in part by PDGFR activity. Editorial We used the RTK inhibitor imantinib to examine the effects of pharmacologic silencing of PDGFR expression. Although imantinib targets multiple RTK's, we demonstrated that only PDGFR α and β expression were significantly altered in FoxQ1-upregulated cells. High doses of imantinib significantly inhibited cell proliferation, while the low-dose treatment markedly inhibited cell migration and invasion in vitro. Either pharmacological treatment or genetic manipulation of PDGFR α …
منابع مشابه
Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression.
Cancer cells with stem cell characteristics are harbored by most tumors, and are characterized by epithelial-mesenchymal transition (EMT) - which promotes invasive growth and metastasis - chemoresistance, and the capacity to reconstitute new tumors. Hence, the control or destruction of cancer stem cells should be a major goal of cancer management. The let-7 family of microRNAs has cancer suppre...
متن کاملUp‐regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine‐resistant pancreatic cancer cells
Cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms - particularly glycolysis - involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine-resistant (GR) Patu8988 cell line, which exhibited clear CSC a...
متن کاملLinkage between Large intergenic non-coding RNA regulator of reprogramming and Stemness State in Samples with Helicobacter pylori Infection of Gastric Cancer Cells
Background: Long noncoding RNAs (lncRNAs), as non-protein coding transcripts, play key roles in tumor progression and stemness state in many malignancies, as their aberrant expression has been found in gastric cancer (GC) as one of the most common cancer worldwide. LINC-ROR (large intergenic noncoding RNA regulator of reprogramming) identified as an involved lncRNA in human malignancies, howeve...
متن کاملPDGFRα and β play critical roles in mediating Foxq1-driven breast cancer stemness and chemoresistance.
Many epithelial-mesenchymal transition (EMT)-promoting transcription factors have been implicated in tumorigenesis and metastasis as well as chemoresistance of cancer. However, the underlying mechanisms mediating these processes are unclear. Here, we report that Foxq1, a forkhead box-containing transcription factor and EMT-inducing gene, promotes stemness traits and chemoresistance in mammary e...
متن کاملPDGFRa and b Play Critical Roles in Mediating Foxq1-Driven Breast Cancer Stemness and Chemoresistance
Many epithelial–mesenchymal transition (EMT)–promoting transcription factors have been implicated in tumorigenesis and metastasis as well as chemoresistance of cancer. However, the underlying mechanisms mediating these processes are unclear. Here, we report that Foxq1, a forkhead box-containing transcription factor and EMT-inducing gene, promotes stemness traits and chemoresistance in mammary e...
متن کاملCantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the β-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib.
Increasing evidence suggests that tumors are composed of a heterogeneous cell population with a small subset of cancer stem cells (CSCs) that sustain tumor formation and growth, and are hypothesized to account for therapeutic resistance. Based on the expression of the surface markers CD44, CD24, and EPCAM, putative CSCs have also been identified in pancreatic cancers. It has been well establish...
متن کامل